Anaerobic degradation of 3-hydroxybenzoate by a newly isolated nitrate-reducing bacterium.

نویسندگان

  • S Heising
  • A Brune
  • B Schink
چکیده

A Gram-negative nitrate-reducing bacterium, strain Asl-3, was isolated from activated sludge with nitrate and 3-hydroxybenzoate as sole source of carbon and energy. The new isolate was facultatively anaerobic, catalase- and oxidase-positive and polarly monotrichously flagellated. In addition to nitrate, nitrite, N2O, and O2 served as electron acceptors. Growth with 3-hydroxybenzoate and nitrate was biphasic: nitrate was completely reduced to nitrite before nitrite reduction to N2 started. Benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, protocatechuate or phenyl-acetate served as electron and carbon source under aerobic and anaerobic conditions. During growth with excess carbon source, poly-beta-hydroxybutyrate was formed. These characteristics allow the affiliation of strain Asl-3 with the family Pseudomonadaceae. Analogous to the pathway of 4-hydroxybenzoate degradation in other bacteria, the initial step in anaerobic 3-hydroxybenzoate degradation by this organism was activation to 3-hydroxy-benzoyl-CoA in an ATP-consuming reaction. Cell extracts of 3-hydroxybenzoate-grown cells exhibited 3-hydroxybenzoyl-CoA synthetase activity of 190 nmol min-1 mg protein-1 as well as benzoyl-CoA synthetase activity of 86 nmol min-1 mg protein-1. A reductive dehydroxylation of 3-hydroxybenzoyl-CoA could not be demonstrated due to rapid hydrolysis of chemically synthesized 3-hydroxybenzoyl-CoA by cell extracts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anaerobic Degradation of the Benzene Nucleus by

A bacterium was isolated by elective culture with p-hydroxybenzoate as substrate and nitrate as electron acceptor. It grew either aerobically or anaerobically, by nitrate respiration, on a range of aromatic compounds. The organism was identified as a pseudomonad and was given the trivial name Pseudomonas PN-1. Benzoate and p-hydroxybenzoate were metabolized aerobically via protocatechuate, foll...

متن کامل

Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini.

A sulfate-reducing phenol-degrading bacterium, strain AK1, was isolated from a 2-bromophenol-utilizing sulfidogenic estuarine sediment enrichment culture. On the basis of phylogenetic analysis of the 16S rRNA gene and DNA homology, strain AK1 is most closely related to Desulfobacterium anilini strain Ani1 (= DSM 4660(T)). In addition to phenol, this organism degrades a variety of other aromatic...

متن کامل

Fermentative degradation of 3-hydroxybenzoate in pure culture by a novel strictly anaerobic bacterium, Sporotomaculum hydroxybenzoicum gen. nov., sp. nov.

A strictly anaerobic bacterium, strain BT, from termite hindgut homogenates, was isolated in pure culture and grew on 3-hydroxybenzoate as sole source of carbon and energy. No other substrate tested was degraded, sulfate, sulfite, thiosulfate, nitrate, ferric iron, oxygen or fumarate were not reduced, and no electron transfer to partner organisms was observed. 3-Hydroxybenzoate was fermented to...

متن کامل

Anaerobic degradation of 4-methylbenzoate by a newly isolated denitrifying bacterium, strain pMbN1.

A novel alphaproteobacterium isolated from freshwater sediments, strain pMbN1, degrades 4-methylbenzoate to CO(2) under nitrate-reducing conditions. While strain pMbN1 utilizes several benzoate derivatives and other polar aromatic compounds, it cannot degrade p-xylene or other hydrocarbons. Based on 16S rRNA gene sequence analysis, strain pMbN1 is affiliated with the genus Magnetospirillum.

متن کامل

Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium.

New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology letters

دوره 68 3  شماره 

صفحات  -

تاریخ انتشار 1991